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Abstract. We propose a generi§ = 1 relativisitic oscillator model which extends the class

of relativistic bosonic oscillators. The Duffin—~Kemmer—Petiau (DKP) oscillator we introduced
in an earlier work can be recovered as an element of a family of DKP oscillators that can be
realized within this generic model. We present the formalism for the exact quantum mechanical
treatment of this generic model and, for illustration, compute the eigenvalues of a particular
family of relativistic oscillators.

1. Introduction

There has been a recent revival of interest in the Duffin—-Kemmer—Petiau (DKP) equation
[1-3], a first-order relativistic equation for spin-0 and spin-1 particles, and its relevance
to some problems in nuclear [4-7] and particle [8, 9] physics. In particular, as part of a
wider research effort on relativistic quantum harmonic oscillators of particles of arbitrary
spin and their properties [10—16], some interest has also focused on its associated relativistic
oscillators of scalar and vector bosons [17-20].

In an earlier investigation [19] we introduced a new potential in the DKP equation.
Because in the non-relativistic limit the spin-0 representation of this DKP equation yields
the usual harmonic oscillator while its spin-1 representation leads to a harmonic oscillator
with a spin—orbit coupling of the Thomas form, we called the system a DKP oscillator.
This oscillator is a realizable relativistic generalization of the quantum harmonic oscillator
for scalar and vector bosons.

The non-relativistic harmonic oscillator is quadraticrifbut the Lorentz-tensor external
interaction we introduced was constructed by a non-minimal substitution, linegriimo
the free covariant DKP equation. This procedure is analogous to that used for the Dirac
oscillator [11-13]. Physically, just as in the Dirac case [12,13], this potential can be
interpreted as representing a zero charge particle interacting, via its anomalous magnetic
dipole moment, with a radial electric field.

However, as will be shown below, this DKP oscillator model is not sufficiently general
since it actually involves only one of the two irreducible antisymmetric second-rank Lorentz-
tensors that can be obtained from the Kemrianatrices [21,22]. The aim of this paper
is to identify a generalized DKP oscillator model, constructed from these two independent
antisymmetric tensors, and investigate the conditions under which classes of DKP oscillators
can be realized.

This paper will also deal with the general quantum mechanical eigenproblem of families
of S = 1 DKP oscillator systems. As an illustration, tegact eigenvalues of a particular
class of oscillators will be calculated within this formalism. These are found to be different
from those obtained for the original DKP oscillator [19].
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2. Covariant form of the DKP oscillator

In an earlier work [19], we constructed the DKP oscillator system by operating the
non-minimal substitutionp — p — imwn®r, wherew is the oscillator frequency and

n® = 2/802 — 1, into the relativistic DKP equation for a free scalar or vector boson of mass
m, i.e.

. — 00

B+ (p —imon’r) + mcAHy = Ihﬂoa—‘tp. Q)
The DKP algebra matrice8* (u = 0, 1, 2, 3) satisfy the commutation relation

BrB B + BB " = g Bt + g" Bt (2)

This DKP oscillator system can be written in a covariant form a
€ L

(,B“pu—m—i-)»%i’ F,w)w=o (3a)
whereix = m?w/e and T is the second-rank antisymmetric tensor

== (%018, B'1) (3b)
while F,, is the electromagnetic antisymmetric tensor

F/w = UpXy — UpXy (30)

with the spacetime coordinate vectot = (¢, ) and the timelike unit vectoz,, = (1, 0).

Physically, if X*” were to be construed as the physical spin tensor, the covariant
equation (3) would suggest that the DKP oscillator has the electromagnetic interpretation
of a neutral particle interacting via its anomalous magnetic dipole momevith a radial
electric field. This view would coincide with one of the alternative interpretations of the
Dirac oscillator [12,13,23]. This interpretation is, however, not warranted since it is not
clear whether=/¥ is the appropriate spin magnetic moment operator. The definitional
ambiguities and difficulties with this operator in the DKP framework have already been
discussed by Kemmer [2].

In equation (3), the antisymmetricc#¥ tensor is just a particular linear combination
of g% and o*’B°, more precisely the anticommutator gP with the intrinsic spin
tensor operatos ¥ = i[ g, B”]. Using only the intrinsic spin tensaer*’ as an alternative
antisymmetric tensor in equationaBcan be shown not to generate an oscillator system and
does not satisfy hermiticity requirements. For the expectation value of any DKP op@rator
considering linear combinations 8P Q and Q8° arises out of general hermiticity constraints
[2,24,25].

Now what is problematic with this DKP oscillator model is th&t" is not sufficiently
general since it involves only one of the two independent antisymmetric second-rank
Lorentz-tensors (i.e. only#’) that can actually be obtained from the Kemngematrices.

It omits couplings associated with the second independent antisymmetric ®@tset
{B*Bu. 0"} [21, 22).

A more general interaction should involve combinations of these two independent

antisymmetric tensors. Here we shall consider general interactions built from

T = {B°, g10"" + 260"} )

where g; and g, are some appropriate constants. This intuitive linear admixture
draws heuristic support from studies on the consistency of spin-1 theories in external
electromagnetic fields [21, 26] which show that accounting for anomalous electromagnetic
interactions by constructing all possible antisymmetric tensors out of the Keghmatrices
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and coupling them appropriately to corresponding tensors constructed from the arbitrary
electromagnetic field tensaF,,, while preserving the causality of propagation and the
reality of eigenvalues, restricts the possible forms of the interactions to

ie
Zanom = E(glo'w + gzew)Fuv' (5)

Furthermore, general interactions constructed from equation (4) would preserve to some
extent the content of our basic DKP oscillator [19] as they would be reducible to it in some
limit.

It remains to be seen, however, whether (and under which conditions) models
constructed from these two independent antisymmetric tensors can actually eatiZe
relativistic oscillator systems. We now address this issue.

3. A generalized DKP oscillator

The necessarycriterion we shall adopt to establish whether a given DKP quantum oscillator
model is an adequat& = 1 relativistic quantum oscillator consists of requiring that the
usual three-dimensional (3D) oscillator should be recovered in the non-relativistic limit.
There are no knowsufficientcriteria to determine uniquely relativistic generalizations of
guantum oscillators [27].

Consider the heuristic generalized DKP oscillator model

(IBNP;L —m+ %meHVF;w)w =0 (6)
where the antisymmetri&"*’ tensor stands for the following combinations gff with the
o"’ andd*’ tensors:

mHY — glJr’BOO.uv +gIO.uvﬂO+g2+ﬂ09;Lv +g£9Mvﬂ0 (7)

gli and gz.i being appropriate constants. In order to investigate whether, and under which
conditions, this model meets the necessary criterion above, we now seek the non-relativistic
limit of (6).

In the spin-1 representation of equation (6), the dynamical staie chosen as the
10-component spinor

i
XE:; Aq B Cy
Y(r) = B(r) withA=(A, |, B=| B> |, andC = | C; (8)
C(r) As B3 Cs
so that, for stationary states, the equation of motion equation (6) decomposes into
me =i(p —i(g; +6g;)mwr) - B
mA =EB — (p+i(g] +4g)mor) AC
mB=EA+i(p+i(g; +6g5)mwr)p
mC = —(p —i(g; +4g,)mwr) A A.

©)

Given thatA is the 3-component spinor analogous to the Dirac upper component, the wave
equation of interest to analyse the non-relativistic limit is the one satisfied g, 28].

Using the definitiong* = p+i(gf + 6g3)mor andg* = p+i(gf + 4gF)mor, one can
eliminateg, B andC in favour of A thus finding that

1
(E2—mHA=p (p"-A)—q A(g"AA)— ﬁpﬂp‘ ‘g™ A (gt A AT (10)
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In the non-relativistic limit, the third term in equation (10) becomes negligible, since it
is of order ¥m®. Using relevant vector algebra and spin identities,akact calculation of
the first two terms on the right-hand side of equation (10) leads to

(E2 —m?® A ~ [p? + (ara_)m?’0®r? + (Bay — 2a_ + 2b_)mw] A
+(ay + b_)ymoL - s+ (ay —a_)mowi(r - p)|A
+[(a- —ay —b_ + b )mwi(s-p)(s-T)
+(byb_ —a_ay)m’w?(s - r)(s- 1) A (11)

where L is the orbital angular momentum while is the 3x 3 spin-1 operator in the
(sm)u = —iewnm representationgy, being the totally antisymmetric Levi-Cevita symbol.
The coefficients.. andb.. stand forg; +6g5 andgi +4g; respectively . This Scidinger-
equivalent equation contains the usual 3D oscillator potential with a non-vanishing zero-
point motion energy, in addition to a spin—orbit coupling and a non-local Darwin term
respectively shown in the second term of equation (11). The third contribution is a sum
of two among the three possible tensor potentials built up fegme and p and usually
encountered in spin-1 nuclear dynamics [29]; they arise here with constant form factors.

In order to meet the requirement for an adequate relativistic generalizatiah fod
guantum oscillators stated above, the form factors of the Darwin and tensor potentials should
be constrained to zero. This restricts the values of the coefficients to

ar =a- by =b_ and bib_=a_a,. (12)

Equations (6) and (7) along with this condition fully specify what we shall denote the
generalized DKP oscillator model.

Note that in the particular case where = 1 andb.. = 1, with ¢gi* = 1 andg; = 0, this
generalized oscillator simply reduces to the basic DKP oscillator [E9] & {8°, o#'}).

The non-relativistic limit of the Sckdinger-equivalent equation (11E (= ¢ + m with
& K mc) yields
N p2 1 ,, 3
£A_|:%+Ema)r —Ea)—a)L-s]A (13)
i.e. the usual harmonic oscillator in addition to a spin—orbit coupling with the same sign,
but half the strength, as the one obtained from the Dirac oscillator [11-13].

In general though, various classes of other oscillator models with alternative oscillator
and spin—orbit coupling strengths, and zero-point energies in the non-relativistic limit can
be constructed from this generic DKP oscillator system. We now consider their quantum
mechanical treatment by solving the eigen-problem of the generic DKP oscillator model.

4. Eigen-solutions of the generalized DKP oscillator

For the calculation of thexactsolution to the generalized DKP oscillator (6) eigen-problem,
the general form of the DKP eigenfunctions we use take the form [28]

ihns (r)Y 1 (S2)
ZL FnJL(r)Y/AI/fl(Q) (14)
ZL GnJL(r)Yjﬂzl(Q)
ZL HnJL(r)Y]AZj_(Q)

whereF,;., G,;. and H,,; are radial wavefunctions;;,(2) are the spherical harmonics
of orderJ ande‘Zl(Q) represent the normalized vector spherical harmonics. Insefting

1
Yiu(r) =—
p
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into equation (6) and using relevant properties of spherical harmonics eliminates the spin-
angular functions and yields 10 coupled radial differential equations [28]. These decouple
into two disjoint sets associated with opposite parities, (taé)’ solutions pertaining to
natural-parity (or magnetic-like) states and thel)’*! solutions referred to as unnatural-
parity (or electric-like) states. With the definition

Ru55(r) = Ro Rujj+1(r) = Ry1 R=F G H (15)

and settinge; = /(J+1D/2J+1) and¢; = /J/(2J + 1), the radial differential
equations associated with-1)’ parity are

EFy=mGy (158)
d J+1 1
(— Iy b_mwr) Fo= ——mH, (150)
dr r I
d J 1
(— + -+ b_mwr> Fo=——mH_; (1)
dr r oy
d J+1 d J
el —+ i bymowr | Hioy | — — — — bymor | H-1 = (EGo — mFy). (1=d)
dr r da  r

The radial differential equations associated with unnatural parity states are coupled in such
a way that

1 1
(i _J+t b+ma)r) Ho=——(mF1 — EGy) (16a)
dr r &y
d 1
<—~|—£ —b+ma)r> Hy=——mF_1—EG_y) (160)
dr oy
-y E+J+1+b7mwr Fi1— oy i—i—{—b,ma)r F_1 =mHy (16c)
dr r d r
d 1 1
(d_ _ I+ a%ﬂ”) 6= = (EF, —mG1) (16d)
r r h ay
(i + 1 — a+ma)r) ¢ = —i(EF,]_ — Wlel) (1&)
da r &y
d 1 d
—ay I S G1+¢y 2 mer G_1=me. (16f)
dr r da r

Of course, for relativistic oscillator eigen-solutions to obtain, these sets of differential
equations have to be solved keeping the coefficientsand b, restricted to satisfy
equation (12).

For illustrating how the exact analytic solutions of equations (15) and (16) can be found,
we now look at the particular family of oscillators such that= —1 andb. = —1.

The exact solution for the magnetic-like states is obtained by eliminafiggHy; in
equation (18) so that one gets the radial equation for the 3D harmonic oscillator

2
(d— + E?2 —m? — mw — m?0®r? — M) For)=0 a7
dr2 r2

whose associated eigenvalues are simply the degenerate and equally spaced
1
o (B —m?) = (N +2)0 (18)

whereN is the principal quantum number definedMs= 2n + J, n representing the radial
guantum number.
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For unnatural parity states, using the same technique as in [19] transforms the problem
of solving equations (I6-f) to that of solving

2
(% + (E? = m®) + 3mw — m*w?r? — J(Jr—jl)> ¢ =2/ J(J + DEwHy (19%)
2
(%+(E2—m2)+mw—m2w2r2— J(Jr—;Ll)> H0=2\/me¢ (19)
Y 1 d J+1 aE gm) (¢
(Gl> T E-m? (E T +mwr) (oum ¢rE ) \ Ho .
Fa\ 1 d J —0E aym ¢
(G_l)_—Ez—mz (a—i-:—i-mwr)(_gjm a,E)(H())' (19d)

Implementing the diagonalization procedure

(go>=}(1+7/ “ )(?) Withy=\/1+/<2and/<=2\/1(1+1E
_ m

2 K —1-—y
(20)

leads to the decoupling of equations 418) into the following 3D oscillator-like radial
equations

d?R JUJ+1
g 2+ + (E2 —m? + 2mw — woy/m2 + 4J (J + 1)E2 — mPw?r? — #) R, =0
r r
(21a)
d?R_ JJ+1
32 + (E2 —m? + 2mw + oy/m2 + 4J (J + 1) E2 — m?w?r? — #) R_=0.
r r

(21b)

The eigenfunction®,. and R_ are orthogonal and far = 0 reduce to the radial functions
¢ and — Hy respectively. The eigenvalug, of equation (2&) simply satisfies

(E2 —m?) — wo\/m? + 47 (J + DE? = 2N — Dom (222)

while the eigenvaluek_ of equation (2&) is given by

(E? —m?) +w\/m? + 47 (J + DE? = 2N — Dom (220)

where the principal quantum numb@t is a positive integer. The nonlinear eigenvalue
equations (22, b) can be solved to yield

1o, o, (o1 o’
o (E% m)_<N 2>w+J(J+1)m:|:A (239)

for which

1
1 arw  az fw\2\?
A=w<l+—>(1+—l—+—2(—>> (230)
2 agm  apg \m
with ag = 2J + 1)?, a1 = 4J(J + 1)(2N — 1) anda, = 4J%(J + 1)2.
In unnatural parity states, the energy of this relativistic oscillator system involves the
usual 3D harmonic oscillator energy (with ah«l decrease in the zero-point energy), a

rotational energy term proportional t6(J + 1) and an energy contributiolh with no
simple physical interpretation.
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This result can be verified by taking its non-relativisic limits and comparing them with
those obtained directly from equation (11). In the limit where the oscillator frequencies are
such thatiow <« mc?, keeping only the first-order term i in equations (22, b) yields

1
> (E2 —m’ct =, =~ (N + Do (24a)
1
> (E? —m’cH =¢,, ~(N—J - Do (24b)
C

in agreement with the eigenvalues of equation (13) which accounts for a 3D non-relativistic
oscillator with a spin—orbit coupling of strengtfiw.

Compared with the unnatural parity eigenspectra which we found for the basic DKP
oscillator [19], the spectra of this family of oscillators differ in the magnitude of the zero-
point motion energy and in the order of the spin—orbit splittings which are inverted relative
to each other.

Altogether, the formalism presented here allows the general treatment of classes of
relativistic DKP oscillators, each of which is specified by a particular choice of the
coefficientse. andb.. We have illustrated how exact analytic eigenspectra can be derived
for a particular set of parameters.

It is not the case, however, thakact analytic solutions can be found for all of them.
While one can solve exactly the natural parity eigenstate problem in all cases, for unnatural
parity states exact solutions exist only for particular sets,oindb...

5. Conclusion

We have introduced a generalized DKP oscillator by a procedure in which the two
independent antisymmetric second-rank Lorentz tensors, constructed from Kegimer
matrices, are combined. This generic model extends the class of relativistic bosonic
oscillators while preserving the content of, and in some limit being reducible to, the
particular DKP oscillator we discussed earlier [19].

In the non-relativistic limit, the DKP equation of motion of our generic model leads to
the usual harmonic oscillator with a spin—orbit coupling of the Thomas form in addition to
a Darwin and two tensor potentials with constant form factors. The adequacy requirement
for the relativistic generalization of quantum oscillators prescribes specific constraints on
the parameters of the model.

We have given the formalism for the exact quantum mechanical treatment of the generic
model and, for illustration, computed the eigenvalues of a particular family of relativistic
oscillators.
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