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Abstract. We propose a genericS = 1 relativisitic oscillator model which extends the class
of relativistic bosonic oscillators. The Duffin–Kemmer–Petiau (DKP) oscillator we introduced
in an earlier work can be recovered as an element of a family of DKP oscillators that can be
realized within this generic model. We present the formalism for the exact quantum mechanical
treatment of this generic model and, for illustration, compute the eigenvalues of a particular
family of relativistic oscillators.

1. Introduction

There has been a recent revival of interest in the Duffin–Kemmer–Petiau (DKP) equation
[1–3], a first-order relativistic equation for spin-0 and spin-1 particles, and its relevance
to some problems in nuclear [4–7] and particle [8, 9] physics. In particular, as part of a
wider research effort on relativistic quantum harmonic oscillators of particles of arbitrary
spin and their properties [10–16], some interest has also focused on its associated relativistic
oscillators of scalar and vector bosons [17–20].

In an earlier investigation [19] we introduced a new potential in the DKP equation.
Because in the non-relativistic limit the spin-0 representation of this DKP equation yields
the usual harmonic oscillator while its spin-1 representation leads to a harmonic oscillator
with a spin–orbit coupling of the Thomas form, we called the system a DKP oscillator.
This oscillator is a realizable relativistic generalization of the quantum harmonic oscillator
for scalar and vector bosons.

The non-relativistic harmonic oscillator is quadratic inr but the Lorentz-tensor external
interaction we introduced was constructed by a non-minimal substitution, linear inr, into
the free covariant DKP equation. This procedure is analogous to that used for the Dirac
oscillator [11–13]. Physically, just as in the Dirac case [12, 13], this potential can be
interpreted as representing a zero charge particle interacting, via its anomalous magnetic
dipole moment, with a radial electric field.

However, as will be shown below, this DKP oscillator model is not sufficiently general
since it actually involves only one of the two irreducible antisymmetric second-rank Lorentz-
tensors that can be obtained from the Kemmerβ matrices [21, 22]. The aim of this paper
is to identify a generalized DKP oscillator model, constructed from these two independent
antisymmetric tensors, and investigate the conditions under which classes of DKP oscillators
can be realized.

This paper will also deal with the general quantum mechanical eigenproblem of families
of S = 1 DKP oscillator systems. As an illustration, theexact eigenvalues of a particular
class of oscillators will be calculated within this formalism. These are found to be different
from those obtained for the original DKP oscillator [19].
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2. Covariant form of the DKP oscillator

In an earlier work [19], we constructed the DKP oscillator system by operating the
non-minimal substitutionp −→ p − imωη0r, whereω is the oscillator frequency and
η0 = 2β02− 1, into the relativistic DKP equation for a free scalar or vector boson of mass
m, i.e.

(cβ · (p− imωη0r)+mc2)ψ = ih̄β0∂ψ

∂t
. (1)

The DKP algebra matricesβµ (µ = 0, 1, 2, 3) satisfy the commutation relation

βµβνβλ + βλβνβµ = gµνβλ + gνλβµ. (2)

This DKP oscillator system can be written in a covariant form a(
βµpµ −m+ λ e

2m
6µνFµν

)
ψ = 0 (3a)

whereλ = m2ω/e and6µν is the second-rank antisymmetric tensor

6µν = {β0, i[βµ, βν ]} (3b)

while Fµν is the electromagnetic antisymmetric tensor

Fµν = uµxν − uνxµ (3c)

with the spacetime coordinate vectorxµ = (t,x) and the timelike unit vectoruµ = (1, 0).
Physically, if 6µν were to be construed as the physical spin tensor, the covariant

equation (3a) would suggest that the DKP oscillator has the electromagnetic interpretation
of a neutral particle interacting via its anomalous magnetic dipole momentλ with a radial
electric field. This view would coincide with one of the alternative interpretations of the
Dirac oscillator [12, 13, 23]. This interpretation is, however, not warranted since it is not
clear whether6µν is the appropriate spin magnetic moment operator. The definitional
ambiguities and difficulties with this operator in the DKP framework have already been
discussed by Kemmer [2].

In equation (3b), the antisymmetric6µν tensor is just a particular linear combination
of β0σµν and σµνβ0, more precisely the anticommutator ofβ0 with the intrinsic spin
tensor operatorσµν = i[βµ, βν ]. Using only the intrinsic spin tensorσµν as an alternative
antisymmetric tensor in equation (3a) can be shown not to generate an oscillator system and
does not satisfy hermiticity requirements. For the expectation value of any DKP operatorQ,
considering linear combinations ofβ0Q andQβ0 arises out of general hermiticity constraints
[2, 24, 25].

Now what is problematic with this DKP oscillator model is that6µν is not sufficiently
general since it involves only one of the two independent antisymmetric second-rank
Lorentz-tensors (i.e. onlyσµν) that can actually be obtained from the Kemmerβ matrices.
It omits couplings associated with the second independent antisymmetric tensorθµν =
{βµβµ, σµν} [21, 22].

A more general interaction should involve combinations of these two independent
antisymmetric tensors. Here we shall consider general interactions built from

6µν = {β0, g1σ
µν + g2θ

µν} (4)

where g1 and g2 are some appropriate constants. This intuitive linear admixture
draws heuristic support from studies on the consistency of spin-1 theories in external
electromagnetic fields [21, 26] which show that accounting for anomalous electromagnetic
interactions by constructing all possible antisymmetric tensors out of the Kemmerβ matrices
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and coupling them appropriately to corresponding tensors constructed from the arbitrary
electromagnetic field tensorFµν , while preserving the causality of propagation and the
reality of eigenvalues, restricts the possible forms of the interactions to

Ianom. = ie

2m
(g1σ

µν + g2θ
µν)Fµν. (5)

Furthermore, general interactions constructed from equation (4) would preserve to some
extent the content of our basic DKP oscillator [19] as they would be reducible to it in some
limit.

It remains to be seen, however, whether (and under which conditions) models
constructed from these two independent antisymmetric tensors can actually realizeS = 1
relativistic oscillator systems. We now address this issue.

3. A generalized DKP oscillator

Thenecessarycriterion we shall adopt to establish whether a given DKP quantum oscillator
model is an adequateS = 1 relativistic quantum oscillator consists of requiring that the
usual three-dimensional (3D) oscillator should be recovered in the non-relativistic limit.
There are no knownsufficient criteria to determine uniquely relativistic generalizations of
quantum oscillators [27].

Consider the heuristic generalized DKP oscillator model

(βµpµ −m+ 1
2mω4

µνFµν)ψ = 0 (6)

where the antisymmetric4µν tensor stands for the following combinations ofβ0 with the
σµν andθµν tensors:

4µν = g+1 β0σµν + g−1 σµνβ0+ g+2 β0θµν + g−2 θµνβ0 (7)

g±1 andg±2 being appropriate constants. In order to investigate whether, and under which
conditions, this model meets the necessary criterion above, we now seek the non-relativistic
limit of (6).

In the spin-1 representation of equation (6), the dynamical stateψ is chosen as the
10-component spinor

ψ(r) =


iϕ(r)
A(r)
B(r)
C(r)

 with A ≡
(
A1

A2

A3

)
, B ≡

(
B1

B2

B3

)
, andC ≡

(
C1

C2

C3

)
(8)

so that, for stationary states, the equation of motion equation (6) decomposes into

mϕ = i(p− i(g−1 + 6g−2 )mωr) ·B
mA = EB − (p+ i(g+1 + 4g+2 )mωr) ∧C
mB = EA+ i(p+ i(g+1 + 6g+2 )mωr)ϕ
mC = −(p− i(g−1 + 4g−2 )mωr) ∧A.

(9)

Given thatA is the 3-component spinor analogous to the Dirac upper component, the wave
equation of interest to analyse the non-relativistic limit is the one satisfied byA [6, 28].
Using the definitionsp± = p± i(g±1 + 6g±2 )mωr andq± = p± i(g±1 + 4g±2 )mωr, one can
eliminateϕ, B andC in favour ofA thus finding that

(E2−m2)A = p−(p+ ·A)− q− ∧ (q+ ∧A)− 1

m2
p+{p− · [q− ∧ (q+ ∧A)]}. (10)
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In the non-relativistic limit, the third term in equation (10) becomes negligible, since it
is of order 1/m3. Using relevant vector algebra and spin identities, theexactcalculation of
the first two terms on the right-hand side of equation (10) leads to

(E2−m2)A ' [p2+ (a+a−)m2ω2r2+ (3a+ − 2a− + 2b−)mω]A

+[(a+ + b−)mωL · s+ (a+ − a−)mωi(r · p)]A
+[(a− − a+ − b− + b+)mωi(s · p)(s · r)
+(b+b− − a−a+)m2ω2(s · r)(s · r)]A (11)

whereL is the orbital angular momentum whiles is the 3× 3 spin-1 operator in the
(sm)kl = −iεklm representation,εklm being the totally antisymmetric Levi-Cevita symbol.
The coefficientsa± andb± stand forg±1 +6g±2 andg±1 +4g±2 respectively . This Schrödinger-
equivalent equation contains the usual 3D oscillator potential with a non-vanishing zero-
point motion energy, in addition to a spin–orbit coupling and a non-local Darwin term
respectively shown in the second term of equation (11). The third contribution is a sum
of two among the three possible tensor potentials built up froms, r and p and usually
encountered in spin-1 nuclear dynamics [29]; they arise here with constant form factors.

In order to meet the requirement for an adequate relativistic generalization forS = 1
quantum oscillators stated above, the form factors of the Darwin and tensor potentials should
be constrained to zero. This restricts the values of the coefficients to

a+ = a− b+ = b− and b+b− = a−a+. (12)

Equations (6) and (7) along with this condition fully specify what we shall denote the
generalized DKP oscillator model.

Note that in the particular case wherea± = 1 andb± = 1, with g±1 = 1 andg±2 = 0, this
generalized oscillator simply reduces to the basic DKP oscillator [19] (4µν = {β0, σµν}).
The non-relativistic limit of the Schrödinger-equivalent equation (11) (E = ε + m with
ε � mc) yields

εA '
[
p2

2m
+ 1

2
mω2r2− 3

2
ω − ωL · s

]
A (13)

i.e. the usual harmonic oscillator in addition to a spin–orbit coupling with the same sign,
but half the strength, as the one obtained from the Dirac oscillator [11–13].

In general though, various classes of other oscillator models with alternative oscillator
and spin–orbit coupling strengths, and zero-point energies in the non-relativistic limit can
be constructed from this generic DKP oscillator system. We now consider their quantum
mechanical treatment by solving the eigen-problem of the generic DKP oscillator model.

4. Eigen-solutions of the generalized DKP oscillator

For the calculation of theexactsolution to the generalized DKP oscillator (6) eigen-problem,
the general form of the DKP eigenfunctions we use take the form [28]

ψJM(r) = 1

r


iφnJ (r)YJM(�)∑
L FnJL(r)Y

M
JL1(�)∑

L GnJL(r)Y
M
JL1(�)∑

L HnJL(r)Y
M
JL1(�)

 (14)

whereFnJL, GnJL andHnJL are radial wavefunctions,YJM(�) are the spherical harmonics
of orderJ andY M

JL1(�) represent the normalized vector spherical harmonics. InsertingψJM
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into equation (6) and using relevant properties of spherical harmonics eliminates the spin-
angular functions and yields 10 coupled radial differential equations [28]. These decouple
into two disjoint sets associated with opposite parities, the(−1)J solutions pertaining to
natural-parity (or magnetic-like) states and the(−1)J+1 solutions referred to as unnatural-
parity (or electric-like) states. With the definition

RnJJ (r) = R0 RnJJ±1(r) = R±1 R ≡ F,G,H (15)

and settingαJ =
√
(J + 1)/(2J + 1) and ζJ =

√
J/(2J + 1), the radial differential

equations associated with(−1)J parity are

EF0 = mG0 (15a)(
d

dr
− J + 1

r
+ b−mωr

)
F0 = − 1

ζJ
mH1 (15b)(

d

dr
+ J
r
+ b−mωr

)
F0 = − 1

αJ
mH−1 (15c)

ζJ

(
d

dr
+ J + 1

r
− b+mωr

)
H1αJ

(
d

dr
− J
r
− b+mωr

)
H−1 = (EG0−mF0). (15d)

The radial differential equations associated with unnatural parity states are coupled in such
a way that(

d

dr
− J + 1

r
− b+mωr

)
H0 = − 1

ζJ
(mF1− EG1) (16a)(

d

dr
+ J
r
− b+mωr

)
H0 = − 1

αJ
(mF−1− EG−1) (16b)

−ζJ
(

d

dr
+ J + 1

r
+ b−mωr

)
F1− αJ

(
d

dr
− J
r
+ b−mωr

)
F−1 = mH0 (16c)(

d

dr
− J + 1

r
− a+mωr

h̄

)
φ = 1

αJ
(EF1−mG1) (16d)(

d

dr
+ J
r
− a+mωr

)
φ = − 1

ζJ
(EF−1−mG−1) (16e)

−αJ
(

d

dr
+ J + 1

r
+ a−mωr

)
G1+ ζJ

(
d

dr
− J
r
+ a−mωr

)
G−1 = mφ. (16f)

Of course, for relativistic oscillator eigen-solutions to obtain, these sets of differential
equations have to be solved keeping the coefficientsa± and b± restricted to satisfy
equation (12).

For illustrating how the exact analytic solutions of equations (15) and (16) can be found,
we now look at the particular family of oscillators such thata± = −1 andb± = −1.

The exact solution for the magnetic-like states is obtained by eliminatingG0, H±1 in
equation (15d) so that one gets the radial equation for the 3D harmonic oscillator(

d2

dr2
+ E2−m2−mω −m2ω2r2− J (J + 1)

r2

)
F0(r) = 0 (17)

whose associated eigenvalues are simply the degenerate and equally spaced

1

2m
(E2

N,J −m2) = (N + 2)ω (18)

whereN is the principal quantum number defined asN = 2n+ J , n representing the radial
quantum number.
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For unnatural parity states, using the same technique as in [19] transforms the problem
of solving equations (16a–f ) to that of solving(

d2

dr2
+ (E2−m2)+ 3mω −m2ω2r2− J (J + 1)

r2

)
φ = 2

√
J (J + 1)EωH0 (19a)(

d2

dr2
+ (E2−m2)+mω −m2ω2r2− J (J + 1)

r2

)
H0 = 2

√
J (J + 1)Eωφ (19b)(

F1

G1

)
= 1

E2−m2

(
d

dr
− J + 1

r
+mωr

)(
αJE ζJm

αJm ζJE

)(
φ

H0

)
(19c)(

F−1

G−1

)
= 1

E2−m2

(
d

dr
+ J
r
+mωr

)(−ζJE αJm

−ζJm αJE

)(
φ

H0

)
. (19d)

Implementing the diagonalization procedure(
φ

H0

)
= 1

2

(
1+ γ κ

κ −1− γ
)(

R+
R−

)
with γ =

√
1+ κ2 andκ = 2

√
J (J + 1)

E

m

(20)

leads to the decoupling of equations (19a, b) into the following 3D oscillator-like radial
equations

d2R+
dr2
+
(
E2−m2+ 2mω − ω

√
m2+ 4J (J + 1)E2−m2ω2r2− J (J + 1)

r2

)
R+ = 0

(21a)

d2R−
dr2
+
(
E2−m2+ 2mω + ω

√
m2+ 4J (J + 1)E2−m2ω2r2− J (J + 1)

r2

)
R− = 0.

(21b)

The eigenfunctionsR+ andR− are orthogonal and forJ = 0 reduce to the radial functions
φ and−H0 respectively. The eigenvalueE+ of equation (21a) simply satisfies

(E2
+ −m2)− ω

√
m2+ 4J (J + 1)E2+ = (2N − 1)ωm (22a)

while the eigenvalueE− of equation (21b) is given by

(E2
− −m2)+ ω

√
m2+ 4J (J + 1)E2− = (2N − 1)ωm (22b)

where the principal quantum numberN is a positive integer. The nonlinear eigenvalue
equations (22a, b) can be solved to yield

1

2m
(E2
± −m2) =

(
N − 1

2

)
ω + J (J + 1)

ω2

m
±1 (23a)

for which

1 = ω
(
J + 1

2

)(
1+ a1

a0

ω

m
+ a2

a0

(ω
m

)2
)1

2

(23b)

with a0 = (2J + 1)2, a1 = 4J (J + 1)(2N − 1) anda2 = 4J 2(J + 1)2.
In unnatural parity states, the energy of this relativistic oscillator system involves the

usual 3D harmonic oscillator energy (with an 1¯hω decrease in the zero-point energy), a
rotational energy term proportional toJ (J + 1) and an energy contribution1 with no
simple physical interpretation.
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This result can be verified by taking its non-relativisic limits and comparing them with
those obtained directly from equation (11). In the limit where the oscillator frequencies are
such that ¯hω � mc2, keeping only the first-order term inω in equations (22a, b) yields

1

2mc2
(E2
+ −m2c4) ≡ ε+n.r. ' (N + J )ω (24a)

1

2mc2
(E2
− −m2c4) ≡ ε−n.r. ' (N − J − 1)ω (24b)

in agreement with the eigenvalues of equation (13) which accounts for a 3D non-relativistic
oscillator with a spin–orbit coupling of strength+h̄ω.

Compared with the unnatural parity eigenspectra which we found for the basic DKP
oscillator [19], the spectra of this family of oscillators differ in the magnitude of the zero-
point motion energy and in the order of the spin–orbit splittings which are inverted relative
to each other.

Altogether, the formalism presented here allows the general treatment of classes of
relativistic DKP oscillators, each of which is specified by a particular choice of the
coefficientsa± andb±. We have illustrated how exact analytic eigenspectra can be derived
for a particular set of parameters.

It is not the case, however, thatexact analytic solutions can be found for all of them.
While one can solve exactly the natural parity eigenstate problem in all cases, for unnatural
parity states exact solutions exist only for particular sets ofa± andb±.

5. Conclusion

We have introduced a generalized DKP oscillator by a procedure in which the two
independent antisymmetric second-rank Lorentz tensors, constructed from Kemmerβ

matrices, are combined. This generic model extends the class of relativistic bosonic
oscillators while preserving the content of, and in some limit being reducible to, the
particular DKP oscillator we discussed earlier [19].

In the non-relativistic limit, the DKP equation of motion of our generic model leads to
the usual harmonic oscillator with a spin–orbit coupling of the Thomas form in addition to
a Darwin and two tensor potentials with constant form factors. The adequacy requirement
for the relativistic generalization of quantum oscillators prescribes specific constraints on
the parameters of the model.

We have given the formalism for the exact quantum mechanical treatment of the generic
model and, for illustration, computed the eigenvalues of a particular family of relativistic
oscillators.
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